
Propeller Display

Renesas H8 Design Contest 2003

Entry H3210

Propeller Display

Contents

 1 Planning

 1.1 Short Description...4
 1.1.1 Abstract..4

 1.2 Functional Specification...5
 1.2.2 Requirements..5
 1.2.3 Functions and Properties...5

 1.3 Additives...6
 1.3.1 Required tools...6

 1.4 Calculations..7
 1.4.1 Speed of the LED's (Framerate)..7
 1.4.2 Required reaction time of the microcontroller...8

 2 Analysis

 2.1 Microcontrollerboard...9
 2.1.1 Requirements..9
 2.1.2 Choice of the Microcontrollers..9

 2.2 LED PCB..11
 2.2.1 Requirements..11
 2.2.2 Evaluation of the LED's..12
 2.2.3 Driver...12

 2.3 Wireless Data Transfer...13

 2.4 Propeller Supply...14
 2.4.1 Requirements..14
 2.4.2 Variants..14

 2.5 Terminal..15
 2.5.1 Requirements..15
 2.5.2 Variants for entering text..15

 3 Realization

 3.1 Microcontrollerboard...16
 3.1.1 Important pages in the Hardwaremanual (H8S/2633)..16
 3.1.2 Top View..17
 3.1.3 Bottom View..17
 3.1.4 5V Regulator..18
 3.1.5 3.3V Regulator...18
 3.1.6 Reset...19
 3.1.7 Quarz / PLL..19
 3.1.8 Serial Transceiver..20
 3.1.9 LCD Interface...21

 3.2 Photo Interrupter...22
 3.2.1 Description...22
 3.2.2 Electronics & Dimensioning..22
 3.2.3 Measurement..24

Page 2

Propeller Display

 3.3 Supply transfer...25

 3.4 LED Driver...26
 3.4.1 Scheme...26
 3.4.2 Description...26
 3.4.3 Dimensioning..26
 3.4.4 Photo of the LED-PCB...27
 3.4.5 Remarks..27

 3.5 Terminal..28
 3.5.1 Constituents..28
 3.5.2 Front...28
 3.5.3 Connectors..28
 3.5.4 Backside...29
 3.5.5 Electrical Connections...29

 3.6 Propeller..30
 3.6.1 Constituents..30
 3.6.2 Photo of the second prototype..30
 3.6.3 Modification..30
 3.6.4 Electrical Connections...31

 3.7 Software..32
 3.7.1 Different Files...32
 3.7.2 Build and flash the software..32
 3.7.3 Rotation Switch..33
 3.7.4 LCD Driver...37
 3.7.5 Serial Interface..42
 3.7.6 Wireless data transfer..46
 3.7.7 Moving Message Display..49
 3.7.8 Software for the Terminal...57
 3.7.9 Font Editor...59

 4 Tests

 4.1 Checklist coarse..60

 4.2 Microcontroller PCB..60

 4.3 Photo Interrupter...60

 5 Finish

 5.1 Checklist...61

 5.2 Things that can be done better..62
 5.2.1 Propeller (Mechanics)...62
 5.2.2 Terminal..62
 5.2.3 Wireless data transfer..62
 5.2.4 Display..62

Page 3

Propeller Display

 1 Planning

 1.1 Short Description

 1.1.1 Abstract
The following drawing shows the basic components of the project.

Page 4

Motor

Microcontrollerboard

Power Supply

Bring power to rotating
propeller LED's

Propeller Display

Terminal

Microcontrollerboard

LCD Display

Switches

Propeller

Propeller Display

 1.2 Functional Specification

 1.2.2 Requirements

Description Must Nice Priority

Display Text 1

Display Pictures 1

Show predefined strings 1

Wireless text and power transfer to the propeller 1

Terminal to enter a user defineable text 2

Integrated power supply (230V) 2

Display of a real time clock and the date 2

Receiving of a sms and show it 3

Display of the current temperature 3

Adjustable LED-Current 3

 1.2.3 Functions and Properties

 1.2.3.1 Power Up

After the power up, a little demo is started and shows all graphical features of the propeller
display. The demo is repeated until the user enters a text or the display is powered down.

 1.2.3.2 Enter a text

It should be easy without reading a thick manual to enter a text on the terminal. If the text is
entered it should be fast and safe transferred to the display. It would be nice if this happens
wireless.

After the receiption of the text, it is displayed immediately on the propeller display until a new
text is received.

 1.2.3.3 Display

Texts and pictures should be easy readable with as less flickering as possible.

Page 5

Propeller Display

 1.3 Additives

 1.3.1 Required tools
 GNU-Tools for programming/Software

 Power Supplies

 Multimeter

 KO

 PC/Laptop

 Handy

 Signal generator

 Soldering Iron / Solder

 PCB prototyping machine

 PCB and schematics drawing tool

 OpenOffice.org for documentation

 Consumable Material (LED's, resistors, condensators, microcontroller...)

Page 6

Propeller Display

 1.4 Calculations

 1.4.1 Speed of the LED's (Framerate)
The rotational speed of the LED's affects directly how many pictures can be displayed in a
second. This corresponds to the framerate.

On a modern TV, the framerate is 100Hz. The more framerate, the less flickering of the
picture.

Because on the Propeller Display the picture is scanned mechanically, it is not easy to achieve
high framerates. For me it isn't possible to mechanics that can rotate the LED's 100 times a
second.

The propeller has to be very well balanced to keep vibrations as low as possible and keep the
speed of the rorateing LED's as high as possible.

How fast are the LED's when a picture is displayed with a framerate of 25Hz?

Here is the Calculation.

Acceptance: f = 25Hz (Framerate)

r = 20cm (Radius from centre of rotation to the LED's)

u=2⋅ r⋅=2⋅0.2m⋅3.141=1.256m

v= f ⋅u⋅3600=25⋅1.256m⋅3600=113'040
m
h
=113.04

km
h

Acceptance: f = 25Hz (Framerate)

r = 15cm (Radius from centre of rotation to the LED's)

u=2⋅r⋅=2⋅0.15m⋅3.141=0.942m

v= f ⋅u⋅3600=25⋅0.942m⋅3600=84'807
m
h
=84.807

km
h

We see that already a slow framerate of 25Hz generates very high speeds on the LED's. The
bigger the radius of the display, the bigger is the speed and more vibrations accure.

Page 7

Propeller Display

 1.4.2 Required reaction time of the microcontroller
Depending of the rotational speed of the LED's and the resolution of the display the
microcontroller has to be quick enough to switch the LED's on and off in an acceptable time.

Here is a calculation of the minimum the, the microcontroller has to react.

Acceptance: f = 25Hz (25 frames in a second)

r = 15cm => u = 0.942m

lLED = 5mm (Vertical distance between the LED's)

In order that a nice clean picture is originated, the horizontal and vertical distance from pixel to
pixel or LED to LED should be the same.

We calculate the number of displayable pixels on the horizontal axis.

PixelCountHorizontal=
u

lLED

= 0.942m
0.005m

=188.4=188

The most speed of the microcontroller is needed when a LED is toggled every time. This
corresponds to a bit pattern of 101010101... When this bit pattern can be displayed, every
other bit pattern/picture can be displayed without problems.

The microcontroller must be fast enough to toggle the LED's 188 times in a second. Whit 25
frames in a second:

PixelClock= f ⋅PixelCountHorizontal=25Hz⋅188=4.7kHz

ReactionTime= 1
PixelClock

= 1
4.7kHz

=212.766 s

When a bright area is displayed and the LED's remain ON the whole time, we see a lot of
horizontal lines and not a picture with single dot's.

To avoid this, the LED's only flashes shortly on a position and then moves a bit to the next
pixel position and flashes shortly again.

For this better display method a shorter reaction time of the microcontroller to switch the
LED's is necessary.

In the hardwaremanual of the microcontroller is the maximal number of cycles which a IRQ-
Routine needs to execute the first instruction.

This time is specified on page 113 in the hardwaremanual and is max 33 clock cycles.

With a clock (microcontroller) of 18.432MHz we get the following time:

IRQDelay Max=
1

f Clock

⋅33Cycles= 1
18.432MHz

⋅33Cycles=1.79 s

We see that the delay time to enter the IRQ-Routine is fast enough for the needs of the
propeller display. (To leave the irq routine we also need max. 1.79s)

Page 8

Propeller Display

 2 Analysis

 2.1 Microcontrollerboard
The microcontrollerboard should be designed universally that the Terminal and Propeller Display can
be realized with the same board.

 2.1.1 Requirements

Propeller Display

 Per LED a digital output

 A digital input for synchronization of the displayed picture and the propeller position

 Interface to the Terminal (wireless, serial)

Terminal

 Interface to the Propeller Display (wireless, serial)

 Interface to a LCD-Display

Combined (plus reserve and „nice to have“)

 20 I/O's on a connector plus 8 I/O's to connect a LCD-Display

 2 async serial interfaces

 3 PWM-Outputs to control the brightness of the LED's

 4 Analog Inputs to measure voltages

 External IRQ-Input

 2.1.2 Choice of the Microcontrollers
Because the price and electrical requirement isn't critical in this project i take a controller with
many IO's, much Flash and RAM and many peripherals.

My choice was the H8S/2633 in single chip mode.

Page 9

Propeller Display

H8S/2633 Overview

Features

What How many

Flashsmemory 256kB

RAM 16kB

Clock 25MHz

Timer 6ch 16-Bit Timer with 16 IC/OC plus 8-Bit Timer

DMAC (Direct Memory Access Con.) Yes

DTC (Data Transfer Controller) Yes

SCI (serial Interface) 5 (One of them with IrDA)

ADC (AD-Converter) 16ch 10-Bit

DAC (DA-Converter) 4ch 8-Bit

Various PPG (16ch Pulse Pattern Generator), 32kHz Subclock

Page 10

Propeller Display

 2.2 LED PCB
On the LED PCB the LED's are located, which converts the electrical signals from the
microcontroller to optical signals for the human eyes and the necessary electrical drivers.

 2.2.1 Requirements
 Min.7 LED's in vertically direction (to display a 7x5 standart font)

 Very bright LED's

 LED's with large angle

 Light mechanical assembly to reduce vibrations

Nice to have

To show pictures it's nicer to have more LED's so i take 16 LED's instead of only 7.

LED Current

On the LED PBC has to be drivers to drive the LED's because the microcontroller cannot provide
enough current.

From Hardware Manual Page 890:

Ilow per Pin: 10mA

Ihigh per Pin: 2mA

Ilow all Pins: 120mA

Ihigh all Pins: 40mA

I drive the LED's with the highest possible current to achieve brightest possible picture. A
minimum of 20mA is necessary.

Page 11

Propeller Display

 2.2.2 Evaluation of the LED's
On the market there are various LED's. Very nice ones have a Red, Green and Blue chip. With
this RGB-LED's the colors can be mixed together and it's possible to create many many different
colors.

I found only one type wich was available in small quantities.

 RGB-LED from Conrad Elektronics

As you can see on the picture this LED is very bad. It's impossible to obtain a homogene white
color by mixing red, green and blue together. The green chip is nearly not visible though the
current was bigger than on the other colors.

Better RGB-LED's like the ones used for big screens are only available in quantities above 1000
pieces, so i looked for single LED's.

The brightest ones that were avaylable for me were these:

Sloan

Type Color Brightness [mcd] Angle [°]

G01N Green 150 120

B01N Blue 45 120

Stanley

Type Color Brightness [mcd] Angle [°]

HBR1105W Red 52 40

HPG1105W Green 38 40

HEB1105W Blue 30 40

Brightness and a big angle are the importantest properties for the Propeller Display, so i tooked
the LED's from Sloan. Unfortunately there exist no red LED's from the series 01N, so i take a red
one from another supplyer with similar datas.

 2.2.3 Driver
To drive the LED's there are two simple possibilities. It can be done with discrete transistors or
with an integrated circuit like the ULN2803 darlington driver.

Because it's easier with the darlington driver and costs are not important in this project, i take the
ULN2803 driver.

Page 12

Propeller Display

 2.3 Wireless Data Transfer
To bring text to the propeller it's necessary to have a wireless communication between the terminal
and the propeller.

I evaluated 3 possibilities.

Variant Description

IrDA Data is transferred optically like in Laptops, Palm, Handy...

Inductively The text can be transferred from a stationary coil to the rotating coil which is
mounted on the propeller and rotateing with it.

Radio Text is transferred by a redio channel.

Decisionmatrix Points 0 (bad) to 10 (good)

IrDA Inductively Radio

Criteria Points Points Points

Safe transmission 3 8 10

Long range 4 1 10

Low power 5 8 3

High speed 8 5 10

Buyable ready to use with an easy interface 10 0 10

Price 10 0 5

Sum 40 22 48

Rank 2 3 1

Data transfer by radio is the best for this project, so i buy a radio module to do the communication
between terminal and propeller.

Page 13

Propeller Display

 2.4 Propeller Supply
Because the propeller rotates it's not to easy to bring power to it for driving the
microcontrollerboard, LED's and radio module.

 2.4.1 Requirements
 VOut min. 7V, therewith for the 5V regulator

 IOut min. 500mA (16 LED's à 20mA = 320mA plus Microcontroller...)

 2.4.2 Variants

Variant Description

Sliding Contact Sliding contact like in motors.

Generator A generator on the propeller generates power from the rotation.

Transformer The primary coil of the transformer is mounted fix and the secondary coil on
the propeller wich is rotateing.

Decisionmatrix Points 0 (bad) to 10 (good)

Sliding C. Generator Transf.

Criteria Points Points Points

Operates on rotation 10 10 10

Operates without rotation (e.g. softwareupdate) 10 0 10

Little weight 10 2 4

For high current (>300mA) 7 5 10

Non sensitive for dirt 3 10 10

High rotation speed possible 8 10 10

Little outlay 10 4 5

Sum 58 41 59

Rank 2 3 1

The best variant is the transformer. But i think that it's not too easy to realize it, so i take the
variant with the sliding contact.

Page 14

Propeller Display

 2.5 Terminal
The terminal is the interface between a human or computer and the propeller display. Text is entered
and editted on the terminal and then transferred to the propeller display.

 2.5.1 Requirements
 Easy and efficient enterint of the text (e.g. Keyboard)

 Display for a preview of the entered text

 Interface to the Propeller Display

 Option: Interface to PC (serial)

 2.5.2 Variants for entering text

Variant Description

Keyboard Entering text like on a PC.

Rotary switch Rotate a switch to select a character.

Touch Screen A fingerdip on the display selects a character.

Decisionmatrix Points 0 (bad) to 10 (good)

Keyboard Rotary switch Touch Screen

Criteria Points Points Points

Fast entering of text 10 5 8

Not sensitive to dust 5 7 10

Easy to realize 5 10 3

Not sensitive for a slap 7 6 2

Lifetime 8 6 10

Cheap 8 10 0

Sum 43 44 33

Rank 2 1 3

Winner of the ranking is the rotary switch.

Page 15

Propeller Display

 3 Realization

 3.1 Microcontrollerboard

 3.1.1 Important pages in the Hardwaremanual (H8S/2633)

What Page Description

Quarz 848 Clock

Supply 887 Electric requirements

Mode 74 Different modes

On Board Programming 802 Flash Memory

Memory 76 Memory and addresses

PWM Outputs 547 14-Bit PWM Outputs

SCI 583 Serial Interfaces

TMR 521 8-Bit Timer

Electrical requirements 883 Voltages, Currents, Frequncies...

IRQ 91 Interrupt Controller

I/O Ports 327 Ports (Digital in- and outputs)

Page 16

Propeller Display

 3.1.2 Top View

 3.1.3 Bottom View

Page 17

SCI2
Serial Interface

SCI3
Serial Interface

I/O
Digital In- and

Outputs

PWR
Supply

(DC > 7V)
AN

4 Analog Inp.
(0 - 5V)

PWM
3 PWM Outputs

IRQ
External Interrupt

Disp
LCD-Display

Interface

5V
Regulator

Choose supply
for displayMode

(Flash)

Interface

Elektronics

Legend

+

1

1

1

1
1

1

3.3V
Regulator

Microcontroller
Hitachi

HD64F2633F25RS232 Transceiver

Operation

Elektronics

Legend

Quarz / PLLReset

Flash

1

1

1
1

Propeller Display

 3.1.4 5V Regulator
For the 5V supply i took a LM7805 fixed 5V regulator. Beside the regulator itself some
capacitors at the input and output are required. The values of the capacitors are taken from the
datasheet.

Maximal output current is 1A.

 3.1.5 3.3V Regulator
The 3.3V are made with a LP2951 voltage regulator. It's output voltage can be set with an
external potention divider. For stabilization there are required also capacitors like with the
LM7805 regulator.

Maximal output current is 100mA.

UOut=U Ref⋅1
R7

R6


The reference voltage is given by the datasheet. For R6 a value of 100kΩ isn't too bad.

URef = 1.235V

R6 = 100kΩ

The required voltage Uout is 3.3V. Now we can calculate the value of R7:

R7=R6⋅U Out

U Ref

−1=100k⋅ 3.3V
1.235V

−1=167k

For R7 we take the calculated 167kΩ resistor.

Page 18

Propeller Display

 3.1.6 Reset
The microcontroller needs a reset device to start up reliable after powering it on.

On the LP2951 voltage regulator a reset device is integratet. It has an open drain output, so the
5V can be switched with it. This is required because the ports of the microcontroller are powered
with 5V.

Have a look at the scheme on item 3.1.5.

 3.1.7 Quarz / PLL
A clock frequency between 2MHz and 25MHz is requered by the CPU. This can be generated
with a quarz/resonator. It's possible to double or qudruplicate the frequency of the quarz by using
the integrated PLL of the microcontroller. The ratio can be set in a register of the microcontroller.

After a power on reset the PLL is working with a ratio of 1:1.

For easy generatig of frequencies requered bye the UART (serial interface) it's best to use a quarz
with a frequency which is a multiple of the baudrate. 18.432MHz is such a frequency.

A disadvange of such a high frequency is the high current consumption of the microcontroller, but
for this project this isn't relevant.

In the hardwaremanual page 848 is described that at frequencies above 12MHz no serial resistor
Rd is required. For the capacitors CL1 and CL2 we take values of 10pF. They can be between 10pF
and 22pF.

On the PLL there are connected the recommended components (hardwaremanual page 850).

Page 19

Propeller Display

 3.1.8 Serial Transceiver
A standart RS232 interface is working with voltages of about 24V. Because the microcontroller
only works with 5V on the ports, a serial transceiver chip is required which converts the 5V signal
to a signal with 24V.

On the other side it converts the 24V from the RS232 side to 5V for the microcontroller.

The DS14C232 from National Semiconductor is such a serial transceiver. Only some capacitors
are required by the chip. It generates the higher voltages by itself.

Recommendet values for the capacitors in the datasheet are 1µF.

One transceiver chip is required for two serial interfaces with Rx and Tx.

Page 20

Propeller Display

 3.1.9 LCD Interface
A standart textdisplay requires following connections to the microcontroller:

Designator Description

VSS Ground

VDD 5V Supply

VLCD Supply for the LCD-Driver 0-5V (Contrast)

RS Register Select

R/W Read (1) or Write (0)

E Enable

DB0 * Databit 0 (I/O)

DB1 * Databit 1 (I/O)

DB2 * Databit 2 (I/O)

DB3 * Databit 3 (I/O)

DB4 Databit 4 (I/O)

DB5 Databit 5 (I/O)

DB6 Databit 6 (I/O)

DB7 Databit 7 (I/O)

E2 Enable for 2nd controller (only on large displays)
 *Optional; not connected on 4-Bit Mode

Beside the supply, 8 digital outputs of the microcontroller are required to connect a standart LCD
display.

Because one port with it's 8 bits is sufficient to drive a LCD in 4-Bit mode, i connect only these
required signals together.

To adjust the contrast by software, for the signal VLCD a PWM-Signal is taken, wich is filtered by
a RC. By vary the PWM signal, different contrasts can be set. A potentiometer isn't longer
requered.

Page 21

Propeller Display

 3.2 Photo Interrupter

 3.2.1 Description
On the rotating part of the propeller there is mounted a photo interrupter. It is required by the
software for synchronize the picture with the propeller position.

The photo interrupter is connected to an IRQ-Input of the microcontroller. IRQ-Inputs can be
configured to fire up at rising or falling edge of a signal.

 3.2.2 Electronics & Dimensioning

Connections

D_25 = 5V, D_24 = GND, D_20 = Output signal (low on interruption)

R25

R25 is dimensioned that on the sender a current of about 15mA flows.

R 25=
5V −U LED

I LED

=
5V −1.6V

15mA
=227

An available value is 220Ω.

Page 22

Propeller Display

R24

By testing different values i discovered an optimal value of 1kΩ.

R23, R26

R26 limits the basis current of the transistors. R23 sets the output current which this circuit can
deliver. On the microcontroller the input resistance of a pin is very high, i take a value of 10kΩ.

Now we can calculate the collector current.

I C=
5V
R23

= 5V
10k

=500 A

The gain of the transistor BC846 with a collector current of 500µA is about 200.

We can calculate the required basis current now..

I B=
I C

V
=

500 A
200

=2.5 A

Basis resistor R26:

RB=
5V
I B

= 5V
2.5 A

=2M 

To bring the transistor to saturaion for R26 i take a value of 200kΩ.

R22

To protect the transistor, the current can be limited with resistor R22.

Max output current of the circuit

Max output current against 5V:

I maxLo=
5V

10k
=500 A

Against ground we have the additional R23:

I maxHi=
5V

10k10k
=250 A

Page 23

Propeller Display

 3.2.3 Measurement
Now i test the circuit.

Channel 1 Output signal D_20

Channel 2 Knot R24, R26, Phototransistor

For a short time a cardboard is pushed in the photo interrupter.

Without the cardboard, the voltage over the phototransistor (CH2) is 0.95V. The output signal of
the circuit (CH1) is low.

At the same time the cardboard is between the LED and the phototransistor, the voltage over the
phototransistor drops to 0.6V. This inhibits the transistor and the output voltage rises to 5V.

Conclusion

The circuit is working properly.

Page 24

Propeller Display

 3.3 Supply transfer

This is a self constructed sliding contact which brings the supply to the rotating propeller.

Page 25

Propeller Display

 3.4 LED Driver
I realize a High-End variant with 16 pixel in the height. Every pixel can be red green or blue, so 16x3
LED's are required.

 3.4.1 Scheme

 3.4.2 Description
A pixel can be switched completely on or off by a switch of the darlington driver. The color can
be selected when a single FET is switched on. It's possible to mix the colors when more than one
FET is switched on or when they're driven with PWM-Signals.

 3.4.3 Dimensioning
Known Values

FET RDS(on) = 0.8Ω
ULN2803 VCE(Sat) @ 20mA = ca. 0.6V
LED Green VAK = 3.5V
LED Blue VAK = 3.6V
LED Red VAK = 1.75V
All LED's ILED(Max) = 20mA

Calculation of LED series resistor

RGre=
V Supply−V AK−V CE Sat 

I LED

−RDS on =
5V −3.5V −0.6V

20mA
−0.8= 44.2

RBlu =
V Supply−V AK−V CE Sat 

I LED

−RDS on =
5V −3.6V −0.6V

20mA
−0.8=39.2

RRd =
V Supply−V AK−V CE Sat 

I LED

−RDS on =
5V −1.75V −0.6V

20mA
−0.8=124

Page 26

Red Green Blue

5V

0 1 2 15

P-Channel
FET's

2 x ULN2803
Darlington Driver

Propeller Display

 3.4.4 Photo of the LED-PCB

 3.4.5 Remarks

FET's

Normally the gate of a FET has a very high resistance to the other connections. But it has a
parasitary capacitance (BSP315, CiSS_max = 400pF). When the gate is switched with a fast PWM

signal, very high currents may appear. Because the microcontroller can deliver only 2mA i protect
it's output with a resistor.

RSeriesRestistance=
U
I
= 5V

2mA
=2.5k

Now even with a short circuit the current in or out to a port can't exceed 2mA.

Photo Interrupter

The photo interrupter is also located on the LED-PCB.

Page 27

Propeller Display

 3.5 Terminal

 3.5.1 Constituents
The terminal consists of the following parts:

Component Self made

Microcontroller PCB

LCD-Display

Radio PCB

Housing

Software

Expendable items (switches, battery, connectors, screws...)

 3.5.2 Front

 3.5.3 Connectors

Page 28

On/OFF Switch

Character
Selector

Off On

Shift

Delete

Ext. PWR
(External DC-
Supply, >7V)

SCI2
(Serial Interface)

Flash
(Softwareupdate)

Normal Flash

GND +

Propeller Display

 3.5.4 Backside

 3.5.5 Electrical Connections
Switches/Incrementalswitch

The H8S/2633 microcontroller on some ports has internal pull-up resistors. So it's possible to
connect switches directly to a port and the other side to ground.

What Connection/Pin on µC-Board Microcontroller

Shift Switch 25-Pin. D-Sub / 16 PE3

Delete Switch 25-Pin. D-Sub / 4 PE4

Incrementalswitch A 25-Pin. D-Sub / 15 PE1

Incrementalswitch B 25-Pin. D-Sub / 3 PE2

Incrementalswitch Push 25-Pin. D-Sub / 2 PE0

Radio PCB

What Connection/Pin on µC-Board Microcontroller

TXEN 25-Pin. D-Sub / 25 PG2

CS 25-Pin. D-Sub / 12 PG1

PWR_UP 25-Pin. D-Sub / 24 PG0

DOUT 25-Pin. D-Sub / 23 RxD0

DIN 25-Pin. D-Sub / 10 TxD0

LCD-Display

The LCD-Display is connected on it's own connector on the microcontroller PCB.

For the pin assignment have a look at the file „Pins_p04.pdf“.

Page 29

Flash

Battery
(9V Block)

Propeller Display

 3.6 Propeller

 3.6.1 Constituents
The propeller consists of the following parts:

Component Self made

Microcontroller PCB

LED-PCB

Radio PCB

Motor

Supply transfer to the propeller

Mechanicals

Software

Expendable items (photo interrupter, connectors...)

 3.6.2 Photo of the second prototype

 3.6.3 Modification
The photo interrupter on the LED-PCB didn't worked well, so i mountet it on the propeller arm.

For high speed's the LED-PCB was too flexible.

Page 30

LED-PCB

Microcontroller
PCB

Photo Interrupter

Motor

Socket

Sliding Contact

Synchronization-
Point

Radio PCB

Propeller Display

 3.6.4 Electrical Connections
Radio PCB

What Connection/Pin on µC-Board Microcontroller

TXEN (Pin 1) 25-Pin. D-Sub / 25 PG2

CS (Pin 4) 25-Pin. D-Sub / 12 PG1

PWR_UP (Pin 2) 25-Pin. D-Sub / 24 PG0

DOUT (Pin 8) 25-Pin. D-Sub / 23 RxD0

DIN (Pin 6) 25-Pin. D-Sub / 10 TxD0

LED-PCB

What Connection/Pin on µC-Board Microcontroller

ROW1 (Pin 17) Blue JP4 / 3 PWM3

ROW2 (Pin 18) Green JP4 / 2 PWM2

ROW3 (Pin 19) Red JP4 / 1 PWM1

Photo interrupter (Pin 20) JP3 / 2 IRQ0

5V (Pin 25) 25-Pin. D-Sub / 14 -

GND (Pin 24) 25-Pin. D-Sub / 1 -

LED D1 (Pin 1) 25-Pin. D-Sub / 22 PD7

LED D2 (Pin 2) 25-Pin. D-Sub / 9 PD6

LED D3 (Pin 3) 25-Pin. D-Sub / 21 PD5

LED D4 (Pin 4) 25-Pin. D-Sub / 8 PD4

LED D5 (Pin 5) 25-Pin. D-Sub / 20 PD3

LED D6 (Pin 6) 25-Pin. D-Sub / 7 PD2

LED D7 (Pin 7) 25-Pin. D-Sub / 19 PD1

LED D8 (Pin 8) 25-Pin. D-Sub / 6 PD0

LED D9 (Pin 9) 25-Pin. D-Sub / 18 PE7

LED D10 (Pin 10) 25-Pin. D-Sub / 5 PE6

LED D11 (Pin 11) 25-Pin. D-Sub / 17 PE5

LED D12 (Pin 12) 25-Pin. D-Sub / 4 PE4

LED D13 (Pin 13) 25-Pin. D-Sub / 16 PE3

LED D14 (Pin 14) 25-Pin. D-Sub / 3 PE2

LED D15 (Pin 15) 25-Pin. D-Sub / 15 PE1

LED D16 (Pin 16) 25-Pin. D-Sub / 2 PE0

Page 31

Propeller Display

 3.7 Software

 3.7.1 Different Files

 3.7.2 Build and flash the software
After programming the software, the batchfile „compile.bat“ can be startet. This run's the GNU-
Compiler which compiles the C-Files. After that the assembler assembles the assembler files.
Compiler and assembler creates objectfiles which are compound to a single file by the linker. With
special commands the linker can create directly a flashable .mot file.

Page 32

makefile

Instructions to build the
software and create a
flashable main.mot file.

ioh82633.h

Address and register
definitions of the
microcontroller.

startup.s

Startup code which initializes
the stack, variables etc. and
starts the main() function.

vectors.s

Vector table; defines which
function is associated with
which interrupt.

isrhdl.s

IRQ-Handler; IRQ-Functions
which are programmed in
assembler.

main.c

File with the main software

LCD.c

Routines to drive a LCD-
Display

LCD.h

This file is included when a
LCD-Display is attached.

SCI.c

Routines for the serial
interface.

SCI.h

To use a serial interface, this
file must be included.

main.mot

Flashable file for the
microcontroller.

linkcmd.x

Commands for the linker with
address definitions (RAM,
ROM, etc.).

LinkerCompiler

Assembler

Propeller Display

 3.7.3 Rotation Switch

 3.7.3.1 Introduction

This switch outputs three signals. One signal represents the push function. The other two
signals show the steps and direction of the rotation.

Following signals appear when the switch is rotated clockwise:

In resting state the signals A and B are both either low or high. Only if a step happens, first
signal A changes it's state and after a short time also signal B.

Following signals appear when the switch is rotated counterclockwise:

Here firstly signal B changes on a step and then signal A.

Page 33

A

B

Clockwise

t

10 11 01 00 10 11 01 00 10Bit Pattern

Position 1 1 2 2 3 3 4 4 5

A

B

Counterclockwise

t

01 11 10 00 01 11 10 00 01Bit Pattern

Position -1 -1 -2 -2 -3 -3 -4 -4 -5

Propeller Display

 3.7.3.2 Measurements

Sequencing is a measurement of the signals to show how the timings of the switch are. After
that we see how fast the microcontroller has to react to these signals.

If the switch is rotated slowly, the time between the to signals is about 5ms. If it is rotated very
fast, this time is about 2ms.

To don't loose any steps it's necessary to poll the signals twice as fast as they appears. This
time is about a millisecond.

Sometimes the signals bounces a bit. How long does the signals bounce?

The bouncing time can be up to one millisecond long. In this phase the state of the switch is
undefined. It has to be filtered away.

Page 34

Propeller Display

 3.7.3.3 Solution with Interrupts

An elegantly way to react to the signals of the rotation switch is to fire an interrupt when a
step appears. It's necessary to setup the IRQ's that these are reacting to the rising and falling
flanks of the signals.

If a step appears let's say interrupt A is fired firstly and when a step to the other side appears,
interrupt B is fired firstly and after some time also the other interrupt.

Because of the bouncing of the signals when they change it's necessary to disable the interrupts
in this time – about one millisecond.

I implemented this variant, but it has some problems:

Problem 1 (slow rotation)

If the rotation switch is rotated very slowly, the first interrupt appears and the software opines
that one step has happened. After that (the interrupts are enabled after the bouncing time), the
other interrupt appears and the software opines that a step on the other side appeared. But this
isn't true.

Problem 2 (fast rotation)

If the switch is rotated very fast it seems that the software is generating random numbers. This
appears because after the bouncing time is over and the interrupts are enabled, it's not defined
which interrupt is fired next time.

Conclusion

This solutions with the interrupts isn't a good solution. It works only if the user rotates the
switch with an average speed. Not too fast and not too slow.

 3.7.3.4 Solution with a State Machine

My second solution is one with a state machine. The signals A and B of the rotation switch are
polled periodically and then given to a state machine.

Page 35

Pos+1Pos-1

= Resting State

A B A B

A B

A B A B

A B A B

A B

A B

A B

Propeller Display

This state machine was quite easy to implement:

void RotationSwitch_Read(void)
 {
 unsigned char SwitchState;
 static unsigned int SwitchState_before = 0;

 SwitchState = PORTE & 6; // Take bits 1 and 2 from port E
 SwitchState = SwitchState >> 1;

 if (SwitchState != SwitchState_before) // If state changed
 {
 switch (SwitchState)
 {
 // On a step
 case 1: if (SwitchState_before == 3) // If switch was idle (11)
 {
 RotationSwitch_counter++; // One step to the right
 UserInput = 1; // Signalisation for main-program
 }
 else
 {
 RotationSwitch_counter--; // One step to the left
 UserInput = 1; // Signalisation for main-program
 }
 break;

 // On a step
 case 2: if (SwitchState_before == 0) // If switch was idle (00)
 {
 RotationSwitch_counter++; // One step to the right
 UserInput = 1; // Signalisation for main-program
 }
 else
 {
 RotationSwitch_counter--; // One step to the left
 UserInput = 1; // Signalisation for main-program
 }
 break;
 }
 }

 SwitchState_before = SwitchState;
 }

Description of the code

The function „RotationSwitch_Read“ is called periodically by a timer interrupt every
millisecond.

In the variable „SwitchState“ is the current position of the switch. Only if something changed
to the last poll, the next instructions are executed.

Only if the signals are different (case 1 or case 2) a step happend.

If the current SwitchState is 01 (dez 1) and before it was 11 (dez 3), then a step to the right
appeared.

If the current SwitchState is 01 (dez 1) and before it was 00 (dez 0), then a step to the left
appeared.

Test / Result

In contrast with the interrupt driven variant described before, this variant with the state
machine is working very well. Even if the switch is rotated very fast or very slow the results
are great.

It is working best when the polling interval is about 2ms.

Page 36

Propeller Display

 3.7.4 LCD Driver

 3.7.4.1 Introduction

Standart character based LCD-Dispays use a HD44780 or compatible controller by Hitachi. It
has a built in font and drives the LCD itself with the necessary voltages.

It's simple to use such a display; firstly it has to be initialized and after that the text can be
transferred to the RAM of the display controller. The controller then shows this text on the
lcd.

To save some pins on the microcontroller, i drive the display in the 4-Bit mode. Data is
transferred in a high- and low-nibble.

All LCD related functions i put in a seperately C-File (lcd.c, lcd.h).

 3.7.4.2 Function Overview

Name Description

LCD_Wait_Time The display controller is very slow, so this function waits until
the display controller is ready for the next command.

LCD_Wait * Reads the busy-flag of the display controller and returns if the
display is ready for the next commands (only works after
initialization of the display).

LCD_Init * Initializes the display.

Sets 4 or 8-Bit mode, cursor on/off, blinking of the cursor ect.

LCD_WriteInstr * Sends an instruction to the display

LCD_Clear Clears the display

LCD_Control Sets display avtive/passive, cursor on/off/blinking

LCD_SetCursor Puts the cursor to a specific line and character position

LCD_WriteChar * Puts a single character to the actual cursor position

LCD_WriteStr Writes a string (array of unsigned char) to the display until the
zero character is reached (ASCII-Character 0).

LCD_WriteInt * Writes an integer value (signed 16-Bit) as text to the display.
*These functions are explained below

Page 37

Propeller Display

 3.7.4.3 LCD_Wait

void LCD_Wait(unsigned char Enable)
 {
 unsigned char busy;

 PBDDR = 8 | 4 | 2 | 1; // Set all pins on port B as outputs, except D4 to D7
 do
 {
 PBDR = 4; // Read from Display
 PBDR = Enable | 4; // Read and Enable (High Nibble)
 busy = PORTB & 128; // Read Busy Flag
 PBDR = 4; // Enable low
 PBDR = Enable | 4; // Read and Enable (Low Nibble)
 PBDR = 4; // Enable low
 }
 while (busy); // Repeat until Busy-Flag is reset
 PBDR = 0; // Disable / Write
 PBDDR = 255; // All pins as outputs
 }

Firstly, all pins which are connected to the display except the data-bus (D4...D7) are defined as
outputs.

Then the signal R/W (Read/Write) is set to high, now we can read from the display.

If the enable signal is given to the display, it puts it's data on the bus and the microcontroller
can read it. First the high nibble of the data (upper 4 Bits) and on the next time the enable
signal is given, it outputs the low nibble (lower 4 Bits).

On large displays with 4 lines and 40 characters there are 2 controller chips. One is controlling
the upper 2 lines and the other the lower 2 lines. The controller is selected by give the right bit
as parameter to the function.

Reading of the busy flag is repeated until it is reset and the display is ready to receive new
command or data.

When the display is ready, all pins of port B are set to outputs.

Page 38

Propeller Display

 3.7.4.4 LCD_Init

void LCD_Init(unsigned char DisplayType)
 {
 unsigned char enable;

 enable = 9; // Init both display controllers (bit 0 and bit 3)

 PBDDR = 255; // Pord B as output

 LCD_Wait_Time(15); // Wait min. 15ms
 PBDR = enable; // Enable1, Enable2
 PBDR = enable | 48; // Enable1, Enable2, Data (3), Init
 PBDR = 48; // Data (3)
 LCD_Wait_Time(5); // Wait min. 5ms
 PBDR = enable; // Enable1, Enable2
 PBDR = enable | 48; // Enable1, Enable2, Data (3), Init
 PBDR = 48; // Data (3)
 LCD_Wait_Time(1); // Wait min. 160us
 PBDR = enable; // Enable1, Enable2
 PBDR = enable | 48; // Enable1, Enable2, Data (3), Init
 PBDR = 48; // Data (3)
 LCD_Wait_Time(1); // Wait min. 160us
 PBDR = enable; // Enable1, Enable2
 PBDR = enable | 32; // Enable1, Enable2, Data (2), 4-Bit Mode
 PBDR = 32; // Data (2)
 LCD_Wait_Time(1); // Wait min. 160us

 // From now, 2 Nibbles required
 LCD_WriteInstr(3, 40); // DataLength 4-Bit, 2 Lines, 5x8Dots Font
 LCD_Clear(); // Clear Display
 LCD_Control(3, 1, 0, 0); // Display On, Cursor Off, Blink Off
 LCD_WriteInstr(3, 128 | 0); // Set DDRAM Addr. 0

 LCD_Wait_Time(1); // Wait

 // Set variables for different display types
 switch (DisplayType)
 {
 // Display with 4 lines and 40 chracters
 case 0: DDRAM_Offset_Line_1 = 0;
 DDRAM_Offset_Line_2 = 64;
 DDRAM_Offset_Line_3 = 0;
 DDRAM_Offset_Line_4 = 64;
 ControllerCount = 2;
 break;

 // Display with 4 lines and 20 chracters
 case 1: DDRAM_Offset_Line_1 = 0;
 DDRAM_Offset_Line_2 = 64;
 DDRAM_Offset_Line_3 = 20;
 DDRAM_Offset_Line_4 = 84;
 ControllerCount = 1;
 }
 }

The initializing of the display is done according to the description in the datasheet of the
HD44780 page 46.

After the initialization the DDRAM-Offset's are set equal to the display type which is
connected.

Possible values for the parameter DisplayType:

DisplayType Description

0 For display with 4 lines and 40 characters per line

1
For display with 4 lines and 20 characters per line

For display with 2 lines and 20 characters per line

Page 39

Propeller Display

 3.7.4.5 LCD_WriteInstr

void LCD_WriteInstr(unsigned char LCD_Controller, unsigned char Instr)
 {
 unsigned char enable;

 switch (LCD_Controller)
 {
 case 1: enable = 8; // Activates first LCD_Controller on the display
 break;

 case 2: enable = 1; // Activates second LCD_Controller on the display (on large displays)
 break;

 case 3: enable = 9; // Activates both LCD_Controller
 break;

 default: enable = 8;
 }

 // Send High Nibble
 PBDR = enable; // Enable1, Enable2
 PBDR = enable | (240 & Instr); // Enable and HighNibble from Instr
 PBDR = 240 & Instr; // HighNibble from Instr
 LCD_Wait(enable); // wait 37us (?)

 // Send Low Nibble
 Instr = Instr << 4;
 PBDR = enable; // Enable1, Enable2
 PBDR = enable | Instr; // Enable and LowNibble from Instr
 PBDR = Instr; // LowNibble from Instr
 LCD_Wait(enable); // wait 37us (?)
 }

Possible values for the parameter LCD_Controller:

LCD_Controller Description

1 Selects first controller

2 Selects second controller

3 Sends the command to both controllers simultaneous

Firstly the HighNibble of the instruction is sent to the display; The enable signal is going to
high, after that additionally the upper 4 bits of the instructions are put on the bus. When the
enable is going to low and the data is still on the bus, the displays inputs this data.

Now the busy flag is read and when the display is ready, the same happens to the lower 4 bits
of the instruction.

When the busy flag is low, the instruction has been executed by the display and it is ready for
the next instruction.

Page 40

Propeller Display

 3.7.4.6 LCD_WriteChar

Example

LCD_WriteChar(8, ' C');

Enables display controller 1 and writes a C to the current cursor position.

 3.7.4.7 LCD_WriteInt

Example

LCD_WriteInt(1, 5, -232);

Writes -232 on line 1 of the display on cursor position 5.

Page 41

Propeller Display

 3.7.5 Serial Interface

 3.7.5.1 Introduction

The H8S/2633 microcontroller has 5 serial interfaces built in. Other microcontrollers can be
connected to it, a PC or other peripherals.

Every serial interface (SCI) can be synchronous, asynchronous, has it's own baudrate and data
format (or 8 databits, parity, number of stoppbits).

One SCI has the possibility to drive an IrDA transceiver chip directly.

All SCI based functions are collected together in the files sci.c and sci.h. In a project simply the
sci.h can be included and then a serial interface can be used.

 3.7.5.2 Function Overview

Name Function

SCI_Init * Initializes the serial interface. Sets the baudrate, activates the
interface, enables the required interrupts etc.

SCI_WriteChar * Writes a character to the send-buffer. If the interface is ready, it
sends out this character and deletes it from the buffer.

SCI_WriteStr Sends a whole string to the serial interface until the zero-
character is reached. (Uses SCI_WriteChar)

SCI_WriteLn Same as SCI_WriteStr, but adds a CR (Carriage Return) and LF
(Line Feed) to the string.

SCI_WriteCRLF Sends a Carriage Return and Line Feed

SCI_WriteInt Converts a 16-bit integer value to a string and sends it to the
serial interface.

SCI_GetRecBufferCount Returns the number of characters in the receivebuffer.

SCI_GetSenBufferCount Returns the number of characters in the sendbuffer.

SCI_GetRecBufferChar * Gets a character from the receivebuffer and deletes it from the
buffer.

SCI_IRQRecChar * Interrupt funktion which receives a character and puts it on the
receivebuffer.

*These functions are explained below

Page 42

Propeller Display

 3.7.5.3 SCI_Init

void SCI0_Init(void) // Like example in hardware manual page 621
 {
 unsigned int index;
 unsigned int wait;
 unsigned char Clock;

 SCI0_RecBuf_CharCount = 0;
 SCI0_SenBuf_CharCount = 0;

 // Initialize receivebuffer
 for (index=0; index<SCI0_RecBuf_Length; index++)
 {
 SCI0_RecBuf[index] = '\0';
 }

 // Initialize sendbuffer
 for (index=0; index<SCI0_SenBuf_Length; index++)
 {
 SCI0_SenBuf[index] = '\0';
 }

 Clock = 0; // SCI Clock = Internal (Asynchronous Mode)

 MSTPCRB = MSTPCRB & 127; // SCI0 Start (Bit 7 => 0)
 SCR0 = SCR0 & 207; // Reset TE- and RE-Bits
 SCR0 = (SCR0 & 207) | Clock; // Set Clock
 SMR0 = 0; // Asynch, 8-Bit, No Parity, Even Parity, 1 Stop Bit, No
Multiproc., Clock = Phi
 SCMR0 = 0; // Normal SCI Operation (No Smart Card)
 BRR0 = 29; // 19200 Baud => n = 0, N = 29
 for (wait=0; wait<2000; wait++); // Wait min. a 1-Bit-Interval
 SCR0 = 64 | 32 | 16; // Receive IRQ, Rx/Tx Enabled, Asynch. Clock
 }

We take a look at the initializing of SCI0, the first serial interface of the H8S/2633
microcontroller.

Firstly the variables SCI_RecBuf_CharCount and SCI_SenBuf_CharCount are set to 0. In this
variables is stored, how many characters are in the buffers. These buffers are realized in
software.

Now both buffers are initialized, therefore they are filled with null characters in a for-loop.

The Variable Clock defines if the clock for the serial interface is generated internally or is
connected externally. In synchronous mode, the clock is coming from outside when data is
received.

In the „Module Stop Control Register B“ the serial interface can be started.

Now the parameters for the dataformat can be set. I take a european quasi standart; 8-Bit data,
no parity, one stoppbit and a baudrate of 19200.

The value for the baudrateregister „BRR2“ has to be calculated.

N
BRR2

=


64⋅22n −1⋅B
⋅106−1= 18.432

64⋅22⋅ 0− 1⋅19200
106−1=29

Φ = Main-Clock in MHz, n = Baudratengenerator Clock, B = Baudrate

After waiting a bit and setting SCR0 again, the interface is ready to communicate.

Page 43

Propeller Display

 3.7.5.4 SCI_WriteChar

void SCI0_WriteChar(unsigned char Data)
 {
 while ((SSR0 & 128) != 128); // Waits until last character is sent
 TDR0 = Data; // Write Data to the send register
 dummy = SSR0; // Dummy read
 SSR0 = SSR0 & 127; // Data is ready, start sending
 }

The top located bit in the register SSR0 signalizes if the last character already was transferred.
If this is not the case we have to wait until the last character is sent.

Now we can write our character to the send register TDR0 and tell the microcontroller with
reset bit 7 of the register SSR0 that the character is ready to send.

Before register SSR0 is writable, a dummy read is necessary (described in hardware manual).

 3.7.5.5 SCI_GetRecBufferChar
char SCI0_GetRecBufferChar(void)
 {
 char zeichen;

 zeichen = '\0';

 if (SCI0_RecBuf_CharCount > 0)
 {
 zeichen = SCI0_RecBuf[SCI0_RecBuf_ReadPos];
 SCI2_RecBuf_ReadPos++;
 SCI2_RecBuf_ReadPos = SCI0_RecBuf_ReadPos % SCI0_RecBuf_Length;
 SCI2_RecBuf_CharCount--;
 }

 return(zeichen);
 }

If there aren't any characters inside the receivbuffer (SCI0_RecBuf_CharCount < 1) then this
function returns a null.

In the other case, if there is one or more characters inside the buffer the function returns the
next charater from the buffer and then point to the next automatically.It's working on the
principle of a FIFO-Buffer (first in, first out).

When the end of the buffer is reached, the modulo-division takes the ReadPosition back to the
beginning of the buffer.

If a character was read from the buffer, the variable SCI0_RecBuf_CharCount is decremented.

Now the readed character is returned by the function.

Page 44

Propeller Display

 3.7.5.6 SCI_IRQRecChar

#pragma interrupt
void SCI0_IRQRecChar(void)
 {
 // Write a character to the buffy when it isn't full
 if (SCI0_RecBuf_CharCount < SCI0_RecBuf_Length)
 {
 SCI0_RecBuf[SCI0_RecBuf_WritePos] = RDR0;
 SCI0_RecBuf_WritePos++;
 SCI0_RecBuf_WritePos = SCI0_RecBuf_WritePos % SCI0_RecBuf_Length; // Go back to the
beginning of the buffer
 SCI0_RecBuf_CharCount++;
 }
 dummy = SSR0;
 SSR0 = SSR0 & 191; // RDRF (Receive Data Register Full) reset flag
 }

This function cannot be used directly.

If the microcontroller received a character, it fires an interrupt and then this function is called.

It stores the received character in the receive buffer and increments the variable
SCI0_RecBuf_CharCount which shows the main program how many characters are currently
in the buffer.

When the end of the buffer is reached and it isn't full, the modulo division takes the
SCI0_RecBuf_WritePos variable to the beginning of the buffer.

If the buffer is full and no more characters can be received because the main program doesn't
empties the buffer, the received characters are deleted.

Last but not least the interrupt flag has to be reset. If not, the interrupt is fired again but no
new character was received and we get an endless loop.

Page 45

Propeller Display

 3.7.6 Wireless data transfer

 3.7.6.1 Introduction

For the wireless data transfer between terminal and propeller display i take a „ nRF401 Loop
Module“ from Nordic. It can be connected to a serial interface of the microcontroller.

Beside the serial interface, three signals which controls the radio module has to be connected:

Signal Description

TXEN Transmit enable (0 = Receive, 1 = Send)

PWR_UP Power On/Off (0 = Standby, 1 = On)

CS Channel Selection (0 = CH1 433.92MHz, 1 = CH2 434.33MHz)

These signals are connected to port G of the microcontroller and can be controlled by
software.

For the data transfer between the radio module and the microcontroller i take SCI0. Both serial
interfaces are working with 5V, so they can be connected directly together. The receive and
transmit signals has to be crossed out between these two devices.

The receiver on the radio module has a built in PLL which synchronizes the clock with the
clock of the sender. To give the receiver a chance to do this synchronization it's necessary to
send this bitpattern some times: „10101010“. This correspondents to the decimal value 170.

After this, to synchronize der UART's it's recommended to send this bitpattern: „11111111“.

Now the UART of the receiver can receive the startbit of the following byte correctly.

When there is no sender near the receiver, the receiver is receiving only noise. So the
microcontroller has to filter out the data of the noise. For this a simple protocoll is introduced.
The microcontroller scans the data stream and looks for a predefined start-sequency. After this
it receives all characters until the final-sequency appears.

Page 46

Propeller Display

 3.7.6.2 Protocol

Synchronization Startsequence Data Finalsequence

Synchronization

Byte 0: 170 PLL Synchronisation

Byte 1: 255 UART Synchronisation

Startsequence

Bytesequency: „StarT“

Data

Any desired lenght of any bytes except CR and LF.

Finalsequence

Byte 0: 13 Carriage Return (CR)

Byte 1: 10 Line Feed (LF)

Remarks

In the application-note of the loop module „ nAN400-07rev1_1.pdf “ is a remark, that the data
packets should be as short as possible. Because there may be other senders in the 433MHz
band like wireless headphones or toys...

It is also necessary to do some error checking and retransmit the data if something was wrong.
Maybe i implement this later if it's necessary.

Page 47

Propeller Display

 3.7.6.3 RF_SendStr

This function takes the string from the user, puts it inside the described protocol and sends it
through the air.

void RF_SendStr(unsigned char *str)
 {
 unsigned int index;

 PGDR = 4 | 1; // Send Mode, Channel 0, PWR_Up

 WaitTime(5); // Wait 5ms to start up the loop module

 SCI0_WriteChar(170); // PLL synchronization with 10101010
 SCI0_WriteChar(170); // PLL synchronization with 10101010
 SCI0_WriteChar(255); // UART synchronization
 SCI0_WriteStr(StartString); // Send startsequence
 SCI0_WriteStr(str); // Send userstring

 // Send stoppsequency some times
 for (index=0; index<10; index++)
 {
 SCI0_WriteChar(13);
 SCI0_WriteChar(10);
 }

 WaitTime(100); // Wait some time

 PGDR = 0; // Receive Mode, Channel 0, PWR_Down
 }

Firstly the loop module is activated and switched to send mode.

After this we have to wait min. 3ms to let it start up correctly.

The PLL synchronization and UART synchronization bytes are sent and after that the string.
Now the stoppsequency is written to the sendbuffer and. We wait until everything is sent
outside.

Sometimes the stoppsequency was not received correctly and then the receive buffer of the
receiver was filled with noise after the sender was powered down. So i send the stoppsequence
more than once.

Page 48

Propeller Display

 3.7.7 Moving Message Display

 3.7.7.1 Introduction & Principle

Before the text can be displayed, it has to be converted to a bitmap and stored in an array.
Because the H8S/2633 has a lot of RAM, i store the whole text as a bitmap in it.

After the conversion, the bitmap can simply transferred periodically to the LED's which
displays the picture column by column.

The eye of the visitor puts these colums together to the complete picture.

To convert a string to a bitmap it's necessary to have a font. Every possible character is stored
in the flash. A little routine copies the single characters together to obtain a whole string.

Have a look to this principle:

Because the motor of the propeller turns clockwise, the microcontroller has to output the
picture from the right side to the left. If the direction would be wrong, the text appears
mirrored.

 3.7.7.2 Scrolling

Scrolling is relatively easy to implement too. A window which complies to the pixelcount of
one round of the propeller is moved over the picture.

Only the pixels in this window are putted out bye the LED's.

When this window moves, also the displayed text moves and it looks like scrolling.

Page 49

Font

Picture

...whole alphabet

LED's

Bytewise scanning of the picture

Display-Window

Window is moving across the whole picture

Picture (array)

Bytewise scanning of the picture
from the display-window

Propeller Display

 3.7.7.3 Creating the bitmap (function: InsertText)

This sequence copies the characters of the font to the bitmap (picture) until the end of the
string is reached.

Start

Copy column (index) from
character to the picture

(PixelX)

End of string?

PixelX++
Picturelength++

index++

No

Yes
End

Picturelength = 0
PixelX = 0

String* = 0 (Pointer to String)

index > 4

No

index = 0

Copy a 0 to the picture to
obtain a little space of one

pixel.
PixelX++

Picturelength++
String*++

Yes

Afte the process of create the bitmap in the variable „PictureLength“ the horizontal pixelcount
is available. The function to scroll the picture needs this information.

Page 50

Propeller Display

Here is the implementation of the picture creation:

void InsertText(unsigned char *str)
 {
 char NoPicture;
 int index;
 int color;

 while (*str != '\0')
 {
 // If it is a picture and not a character insert it
 NoPicture = 1;
 switch (*str)
 {
 case 177: InsertPicture(0); // TSU-Logo
 NoPicture = 0;
 break;

 case 178: InsertPicture(1); // Colortest
 NoPicture = 0;
 break;

 case 179: InsertPicture(2); // Smiley
 NoPicture = 0;
 break;
...<snip>

 case 186: for (index=0; index<32; index++)
 {
 InsertPicture(9); // Animation: Running man
 }
 ScrollSteps = 16;
 NoPicture = 0;
 break;

 case 187: for (index=0; index<9; index++)
 {
 InsertPicture(10); // Animation: Coin
 }
 ScrollSteps = 16;
 NoPicture = 0;
 break;
 }

 // If it isn't a picture, it's a character
 if (NoPicture)
 {
 for (index=0; index<5; index++)
 {
 for (color=0; color<3; color++)
 {
 Picture[PictureLength][color] = font[*str][index];
 }

 // Update Picture-Length
 if (PictureLength < PictureLengthMax)
 {
 PictureLength++;
 }
 }
 for (color=0; color<3; color++)
 {
 Picture[PictureLength][color] = 0; // Space between the characters
 }

 // Update Picture-Length
 if (PictureLength < PictureLengthMax)
 {
 PictureLength++;
 }
 }

 str++; // Next character
 }

 DisplayPosition = 0 - DisplayLength;
 }

Page 51

Propeller Display

When this function is called and given a pointer to it which points to a string (character array),
it converts the string into a bitmap.

It copies all characters to the bitmap until the end of the string (zero) is reached.

At the end the variable „PictureLength“ shows the length of the created picture.

I used some unused characters as placeholders for pictures. The pictures are also stored in the
flash and simply copied to the displayed bitmap.

Remarks

Because the color cannot been chosen the font is copied to the red, blue and green picture
array. So the text appears as white.

Page 52

Propeller Display

 3.7.7.4 Implementation of the scrolling

If the picture is created and completely in the picture-array it can be displayed.

The rectangle „Display“ on the graphic represents a round of the propeller.

Startet is the output on the posotion 0 – DisplayLength. If the Position is smaller than 0 no
picture is dieplayed. To scroll one pixel, the DisplayPosition is incremented by one.

Only the pixels of the display which are inside the bitmap are displayed. This can be calculated
as follows: 0 <= PictureIndex <= PictureLength.

Now the bitmap was displayed completely and after this the display-window „Display“ can be
moved to the start: DisplayPosition = 0 – DisplayLength.

Page 53

Bitmap

PictureLength

Display

DisplayLength

PictureIndex

DisplayPosition

0 1 2 3 4 5 6 7 8 9-4 -3 -2 -1

Bitmap

PictureLength

Display

DisplayLength

PictureIndex

DisplayPosition

0 1 2 3 4 5 6 7 8 9-4 -3 -2 -1

Bitmap

Display

DisplayLength

PictureIndex

DisplayPosition

0 1 2 3 4 5 6 7 8 9-4 -3 -2 -1

Propeller Display

 3.7.7.5 Picture synchronization (IRQ0)

Every time the light beam of the photo interrupter is interrupted, IRQ0 is fired.

The function synchronizes the timer which drives the LED's by resetting it to 0. Also the
scrolling is issued in this moment.

Code for IRQ0 (called by the photo interrupter)

void IRQ0(void)
 {
 TCNT0 = 0; // Reset Timer

 PictureIndex = DisplayPosition + DisplayLength;

 // Scroll
 DisplayPosition = DisplayPosition + ScrollSteps;
 if (DisplayPosition > PictureLength)
 {
 DisplayPosition = 0 - DisplayLength;
 }

 dummy = ISR;
 ISR = ISR & 254; // Interrupt 0 rücksetzen
 }

After every time a round from the propeller is complete, the photo interrupter creates this
interrupt and calls the IRQ-Function IRQ0.

To synchronize the timer with the propeller, the timer value is set to 0. Now the scrolling
appears with actualize the variable „DisplayPosition“. If the scrolling has to be pixelwise, 1 is
added to „DisplayPosition“.

When a higher value than 1 is added after a round, the text scrolls faster.

Page 54

Start
(IRQ0 from photo

interrupter)

No

Yes
Set DisplayPosition) to the

beginning

Reset timer
(TCNT0 = 0),

Scroll (calculate new
PictureIndex

End

Showed whole picture?

Propeller Display

 3.7.7.6 Picture Display (IRQ TCNT0 Compare Match)

Controlled by a timerinterrupt (TCNT0 Compare Match), the function „DisplayUpdate“ is
called periodically. It's controlling the LED's which are connected to the ports E and D.

void DisplayUpdate(void)
 {
 static int divider = 0;
 static int counter = 0;
 int PictureIndexTemp;

 if (PictureIndex > -1)
 {
 if (divider < 3)
 {
 switch (counter)
 {
 case 0: // Red
 PictureIndexTemp = PictureIndex-2;
 if ((PictureIndexTemp > -1) & (PictureIndexTemp < PictureLength))
 {
 PCDR = 0;
 P1DR = 192;

 PEDR = Picture[PictureIndexTemp][0] & 255; // Lower 8-Bits of the pic
 PDDR = (Picture[PictureIndexTemp][0] >> 8) & 255;// Upper 8-Bits of the pic
 }
 else
 {
 PEDR = 0;
 PDDR = 0;
 }
 break;
...<cut> same for green and blue...
 }
 }
 else
 {
 PEDR = 0;
 PDDR = 0;
 }

 counter++;
 if (counter > 2)
 {
 counter = 0;
 divider++;
 }

 if (divider > 7)
 {
 divider = 0;
 if (PictureIndex > -2)
 {
 PictureIndex--;
 }
 }
 }
 }

With port C and port 1 the FET's, which control the colors, are controlled to select the desired
color.

Page 55

Propeller Display

Remarks

For a nicer picture the LED's only flashes a short time when the propeller is on a position.
Then they are darkly while the propeller move the LED's to the next pixel position and they
flash again. This is done with the divider.

Page 56

Improved Display

Normal Display

Propeller Display

 3.7.8 Software for the Terminal

 3.7.8.1 Sequency

Page 57

Power Up

Character entered?
No

Yes

Wait 2 seconds

Welcome screen

Send string wireless to the
Propeller Display

Final character?

Show "sending succesful"
message

Yes

No

Add character to the string

Display actual string on the
LCD-Display

Wait 2 seconds

Propeller Display

 3.7.8.2 Entering the text

To enter a text, the rotation switch can be rotated until the cursor on the LCD-Display is over
the desired character on the alphabet.

Now, a push to the rotation switch selects the character and adds it to the string.

LCD-Display of the terminal

The first three lines of the display shows the current text. On the end of the string, a little
arrow is shown.

On the example above the text „Propeller Display“ has been entered.

Because not the whole alphabet can be shown at a time, it scrolls when the start or end of the
display is reached by the cursor.

 3.7.8.3 Sending text to the Propeller Display

If the entered text is complete, we select the arrow from the alphabet showed on the last line of
the display and then the text will be transferred to the Propeller Display.

 3.7.8.4 Result

Very first prototype shows: „Propeller Display“

Page 58

Propeller Display

 3.7.9 Font Editor
In Delphi i programmed a little font editor.

On top of the program a ASCII code can be selected.

After that, by clicking on the virtually LED's the character can be designed.

When the program will be closed, it generates a C-File with an array with the bitmapped
characters in it. The organization is as follows: font[ASCII-Code][index]. Each bit represents a
pixel.

This generated C-File can be included in the project.

Automatically generated code with the font

const unsigned char font[256][5] = {
 {218,140,220,148,218},
 {228,138,68,42,196},
 {236,130,78,42,204},
 {196,42,202,42,196},
 {194,34,194,38,194},
 {0,0,0,0,0},
 {0,0,242,0,0},
 {0,224,0,224,0},
 {40,254,40,254,40},
 {36,84,254,84,72},
 {196,200,16,38,70},
...
 {48,138,10,138,60}
};

Page 59

Show/Edit
character

Select ASCII-Code

Close Program

Propeller Display

 4 Tests

 4.1 Checklist coarse
Propeller Display

Function OK

Motor is running after power up

A demo text is showed

Wireless transferred text is displayed

After power down the motor stopps

Terminal

Funktion OK

Text can be entered after power up

Easy entering of text

Text can be transferred to the Propeller Display

Message when transfer was corrupt

 4.2 Microcontroller PCB

Function Measured OK

Supply (5V, 3.3V) 4.99V, 3.26V

Quarzfrequency 18.432MHz 18.432MHz

Software is flashable to the microcontroller -

Correct start up after a power on reset -

IRQ's are fired (timer, external pins) -

I/O's can be read and written -

 4.3 Photo Interrupter

Function OK

Signal is changing when light beam is interrupted

Page 60

Propeller Display

 5 Finish

 5.1 Checklist
Are the postulated parts of the project ok?

Project part OK

Basics elaborated

Priorities elaborated

Realizing of the mechanics

Bring power to the propeller (without battery)

Wireless data transfer to the propeller

Drive the LED's correctly

Tests

Optional: Receive a SMS from a handy and show the text

Photo of the second prototype

Page 61

Propeller Display

 5.2 Things that can be done better

 5.2.1 Propeller (Mechanics)
If the propeller is lighter and more stable, the rotation can be faster. This gives a clear picture
without flicker.

 5.2.2 Terminal
When there was an error in the transmission of the text to the propeller display a message should
be shown on the display.

 5.2.3 Wireless data transfer
Sometimes the text isn't transferred without errors. To make the data transfer more safely, a
checksum and retransmission should be implemented

 5.2.4 Display
It's possible to modulate the LED currents with a PWM signal. Then every RGB-Color is possible
by mixing the red, blue and green light.

Page 62

