PC Remote Display

eZ2940
ZiLOG 2004 FLASH NETS CASH

Design Contest

[image: image1.png]
Contents
31.
Overview

31.1
Description

31.2
Hardware Parts

31.3
Software Parts

42.
Hardware

42.1
LCD Connections

42.2
LCD Electronics

52.3
LCD Description

63.
Firmware

63.1
Requirements

63.2
Interrupt setup

73.3
Timer Interrupt

83.4
UART Interrupt

83.5
LCD Driver

93.6
Main program

104.
PC Software

104.1
Requirements

104.2
Used Components

104.2.1
Screeenshot

104.2.2
Serial Interface

104.3
Main Window

104.4
Settings

115.
“PC Remote Display” in action

115.1
Photos

1. Overview
1.1 Description

The “PC Remote Display” is connected serially to a PC. A small tool on the PC is periodically taking screenshots of parts of the desktop and sending these to the Remote Display which is displaying it.
1.2 Hardware Parts

· eZ80F91 Acclaim! Contest Kit

· Graphic LCD Module; COG 128X64C1

1.3 Software Parts

· Firmware for the Microcontroller

· PC Application for taking the screenshots

2. Hardware
2.1 LCD Connections

The Display is connected by a 8-Bit databus and 4 control lines. It is attached to the contest kit like shown on the table below.
	LCD Display
	Microcontroller
	Signal

	D0
	PA0
	Databit 0

	D1
	PA1
	Databit 1

	D2
	PA2
	Databit 2

	D3
	PA3
	Databit 3

	D4
	PA4
	Databit 4

	D5
	PA5
	Databit 5

	D6
	PA6
	Databit 6

	D7
	PA7
	Databit 7

	RS
	PC0
	Register Select

	RW
	PC1
	Read/Write

	E
	PC2
	Enable (Clock)

	Reset
	PC3
	Reset

2.2 LCD Electronics

The display only needs some capacitors to generate the desired voltages to drive the LCD. All other parts are integrated in the “chip on glass”.
[image: image2.emf]C1

1u

GND

C2

1u

C4

1u

C3

1u

C9

1u

C8

1u

C7

1u

C6

1u

C5

1u

GND

CS1

1

RESET

2

RS

3

RW

4

E

5

D0

6

D1

7

D2

8

D3

9

D4

10

D5

11

D6/SCLK

12

D7/SD

13

VDD

14

VSS

15

VOUT

16

C4+

17

C3+

18

C1-

19

C1+

20

C2+

21

C2-

22

V1

23

V2

24

V3

25

V4

26

V0

27

PS

28

Backlight-

29

Backlight+

30

LCD1

LCD_COG128X64C1

GND

D7

D6

D5

D4

D3

D2

D1

D0

3V

3V

GND

RW

RS

RESET

E

R2

75R

R3

75R

R4

75R

R1

75R

1

2

J1

CON2

C1

1u

GND

C2

1u

C4

1u

C3

1u

C9

1u

C8

1u

C7

1u

C6

1u

C5

1u

GND

CS1

1

RESET

2

RS

3

RW

4

E

5

D0

6

D1

7

D2

8

D3

9

D4

10

D5

11

D6/SCLK

12

D7/SD

13

VDD

14

VSS

15

VOUT

16

C4+

17

C3+

18

C1-

19

C1+

20

C2+

21

C2-

22

V1

23

V2

24

V3

25

V4

26

V0

27

PS

28

Backlight-

29

Backlight+

30

LCD1

LCD_COG128X64C1

GND

D7

D6

D5

D4

D3

D2

D1

D0

3V

3V

GND

RW

RS

RESET

E

R2

75R

R3

75R

R4

75R

R1

75R

1

2

J1

CON2

2.3 LCD Description

Type: Tecdis COG 128X64C1

Heart of the display is a Samsung ICS6B0724 driver IC.

The display has a resolutiuon of 128x64 Pixels and an integrated green LED-Backlight.
It has 1kB RAM to hold the whole screen area, which can be written and read.

[image: image3.jpg] [image: image4.jpg]
The memory is organized in this way:

[image: image5.emf]Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Column 0Column 1Column 2...

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

The displayed area is divided into 8 lines or pages. Each page is divided into 128 columns of 8 Bits.

It’s possible to read/write the columns in a random order.

3. Firmware
For softwaredevoloping, the delivered tool “ZDS II – eZ80Acclaim!” was used.

I used the “StarterProject” in the Samples-Directory as a basis for my project.

After the building process in release mode, the image can be flashed into the eZ80.
3.1 Requirements

· Serial Interface (fast, 115’200Baud)

· Timer

· LCD Driver

3.2 Interrupt setup
To use the timer and serial interface in a nice way, it’s necessary to fire “events” if a defined time has elapsed or a character was received.
Firstly we need the vector addresses of the desired interrupt sources from the hardware manual and define it in the code.

#define VECTOR_UART0 0x70

#define VECTOR_TIMER0 0x54

Then we need these forward declarations.

extern void init_default_vectors(void);

extern void set_vector(unsigned short vector,void (*hndlr)(void));

After the registers of the timer and uart are properly set up, we can assign the IRQ-Functions to the vectors.

set_vector(VECTOR_UART0, UART_Receive);

set_vector(VECTOR_TIMER0, TIMER0_IRQ);

Last but not least, the irq’s can be activated.

UART0_IER = UART0_IER | B0;

TMR0_IER = TMR0_IER | B0;

3.3 Timer Interrupt

The timer is initialized to fire every 10ms.

void timer_init(void)

{

TMR0_CTL = TMR0_CTL | B4; // Clock Divide: 256

TMR0_CTL = TMR0_CTL | B3; // Clock Divide: 256

TMR0_CTL = TMR0_CTL | B2; // Continous mode

TMR0_CTL = TMR0_CTL | B1; // Force Auto Reload

TMR0_RR_L = 161; // Timerinterrupt every 10ms; (50MHz/256)/1953

TMR0_RR_H = 7; // Timerinterrupt every 10ms; (50MHz/256)/1953

TMR0_CTL = TMR0_CTL | B0; // Start Timer

}
Here is the timer-interrupt itself

void interrupt TIMER0_IRQ(void)

{

 char dummy;

dummy = TMR0_IIR; // Dummy read to clear irq-flag

if (SerialTimeout < 2000)

{

SerialTimeout++;

}

// If no byte was received for 30ms, reset bytecounter

if (SerialTimeout > 2)

{

count = 0;

}

}
Firstly the IIR-Register must be read to clear the interrupt flag.

Now it is checked if the SerialTimeout-Counter is already on the max. If not, it is incremented.

If the SerialTimeout is over 2 counts (3 counts = 30ms), we are in the timeout condition and the bytecounter for the display data is reset. This occurs if a person unplugs the serial cable while a picture is receiving.
Then the timeout resets the bytecounter “count” and after plugging the cable, the next picture can be received perfectly.

The SerialTimeout is reset by an uart-interrupt if a character was received.

3.4 UART Interrupt

In the UART Interrupt the data for the display is received.

void interrupt UART_Receive(void)

{

char character;

character = UART_RBR; // Read received character

SerialTimeout = 0; // Character was received; reset Timeout-Counter

PictureBuffer[count] = ~character; // Put inverted byte in Picturebuffer

// If picture is complete, set flag for main loop to display it

count++;

if (count >= sizeof(PictureBuffer))

{

count = 0;

NewPicture = 1;

}

}
If the interrupt has fired, the received character can be copied from the RBR register into the PictureBuffer. The bytecounter-variable “count” is incremented by 1 so the next received character is stored in the right position in the PictureBuffer.

The SerialTimeout-variable is reset each time a character is received.

If “count” has the same value as the length of the PictureBuffer (8 Pages * 128 Columns = 1024), the picture is complete.

A flag (NewPicture) is set to tell the main loop that a new picture is available.

3.5 LCD Driver

The LCD Driver is located in two separate files called “glcd.h” and “glcd.c”. It has functions to startup/init the display “GLCD_Init()” and functions to set/reset pixels, write text, draw lines/circles/boxes…
For this project, the function “GLCD_WriteDisplayByte(…)” is the most used.

void GLCD_WriteDisplayByte(unsigned char page, unsigned char line, unsigned char databyte)

 {

 GLCD_SetPage(PE1, page);

 GLCD_SetYAddress(PE1, line);

 GLCD_WriteDisplayData(PE1, databyte);

 }

We set the “cursor” (memory pointer) to the desired page and column and then write the new databyte to this location.

The parameter “PE1” is the bitposition, where the enable-signal is connected to the microcontroller. This is useful if displays with two display-controllers are connected.

In this configuration it is always PE1.
All instructions of the display are listed on page 35 of the Samsung S6B0724 datasheet.

3.6 Main program

After startup, some initializations are made to set up the timer, uart and show a startpicture on the LCD.

Now we enter the while(1) loop until powerdown…

while (1)

{
 // If new picture was received

 if (NewPicture)

 {

 index = 0; // Reset Byteindex

 for (page=0; page<8; page++)

 {

 for (line=0; line <128; line++)

 {

 GLCD_WriteDisplayByte(page, line, PictureBuffer[index]);

 index++;

 }

 }

 NewPicture = 0;

 }

 // If no picture was received for 10 seconds, show standard picture

 if (SerialTimeout > 1000)

 {

 GLCD_ShowPicture(0);

 }

}

[image: image6.emf]Start

New Picture?

SerialTimeout?

No

No

Show received Picture

Yes

Yes

Show standard Picture

If a new picture is available (NewPicture != 0), the array PictureBuffer can be sent byte by byte to the display.

After that, the flag “NewPicture” is reset.

If for more than 10 seconds no data was received, a standard pictured will be showed.

4. PC Software
The PC Software is written in Microsoft Visual Studio .NET with the programming language C#.

It’s required to have installed the freely available .NET framework from Microsoft to run the .exe.
4.1 Requirements

· Serial Interface (fast, 115’200Baud)

· Screenshot function

4.2 Used Components

4.2.1 Screeenshot

For taking the screenshots, I used the component ImageCapture from the codeproject website.

http://www.codeproject.com/csharp/ImageCapture.asp
4.2.2 Serial Interface

Code to communicate via RS232 was found on the GotDotNet website.
http://www.gotdotnet.com/Community/UserSamples/Details.aspx?SampleGuid=b06e30f9-1301-4cc6-ac14-dfe325097c69
4.3 Main Window

[image: image7.png]
4.4 Settings Window
[image: image8.png]
5. “PC Remote Display” in action

5.1 Photos
	PC Monitor
	PC Remote Display

	
	

	[image: image9.jpg]
	[image: image10.jpg]

	
	

	[image: image11.jpg]
	[image: image12.jpg]

	
	

	[image: image13.jpg]
	[image: image14.jpg]

PAGE
11

_1157883886.vsd
Page 0�

Page 1�

Page 2�

Page 3�

Page 4�

Page 5�

Page 6�

Page 7�

�

Bit 0�

Column 0�

Column 1�

Column 2�

...�

Bit 1�

Bit 2�

Bit 3�

Bit 4�

Bit 5�

Bit 6�

Bit 7�

�

�

_1157886984.vsd
Start�

New Picture?�

SerialTimeout?�

No�

No�

Show received Picture�

Yes�

Yes�

Show standard Picture�

�

�

